81 research outputs found

    Sharp wave/ripple network oscillations and learning-associated hippocampal maps

    Get PDF
    Sharp wave/ripple (SWR, 150–250 Hz) hippocampal events have long been postulated to be involved in memory consolidation. However, more recent work has investigated SWRs that occur during active waking behaviour: findings that suggest that SWRs may also play a role in cell assembly strengthening or spatial working memory. Do such theories of SWR function apply to animal learning? This review discusses how general theories linking SWRs to memory-related function may explain circuit mechanisms related to rodent spatial learning and to the associated stabilization of new cognitive maps

    Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning

    Get PDF
    In the hippocampus, cell assemblies forming mnemonic representations of space are thought to arise as a result of changes in functional connections of pyramidal cells. We have found that CA1 interneuron circuits are also reconfigured during goaloriented spatial learning through modification of inputs from pyramidal cells. As learning progressed, new pyramidal assemblies expressed in theta cycles alternated with previously established ones, and eventually overtook them. The firing patterns of interneurons developed a relationship to new, learningrelated assemblies: some interneurons associated their activity with new pyramidal assemblies while some others dissociated from them. These firing associations were explained by changes in the weight of monosynaptic inputs received by interneurons from new pyramidal assemblies, as these predicted the associational changes. Spatial learning thus engages circuit modifications in the hippocampus that incorporate a redistribution of inhibitory activity that might assist in the segregation of competing pyramidal cell assembly patterns in space and time

    Activity-dependent plasticity of hippocampal place maps

    Get PDF
    Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remappin

    Hippocampal reactivation of random trajectories resembling Brownian Diffusion

    Get PDF
    Hippocampal activity patterns representing movement trajectories are reactivated in immobility and sleep periods, a process associated with memory recall, consolidation, and decision making. It is thought that only fixed, behaviorally relevant patterns can be reactivated, which are stored across hippocampal synaptic connections. To test whether some generalized rules govern reactivation, we examined trajectory reactivation following non-stereotypical exploration of familiar open-field environments. We found that random trajectories of varying lengths and timescales were reactivated, resembling that of Brownian motion of particles. The animals’ behavioral trajectory did not follow Brownian diffusion demonstrating that the exact behavioral experience is not reactivated. Therefore, hippocampal circuits are able to generate random trajectories of any recently active map by following diffusion dynamics. This ability of hippocampal circuits to generate representations of all behavioral outcome combinations, experienced or not, may underlie a wide variety of hippocampal-dependent cognitive functions such as learning, generalization, and planning

    Optogenetic inhibition-mediated activity-dependent modification of CA1 pyramidal-interneuron connections during behavior

    Get PDF
    In vitro work revealed that excitatory synaptic inputs to hippocampal inhibitory interneurons could undergo Hebbian, associative, or non-associative plasticity. Both behavioral and learning-dependent reorganization of these connections has also been demonstrated by measuring spike transmission probabilities in pyramidal cell-interneuron spike cross-correlations that indicate monosynaptic connections. Here we investigated the activity-dependent modification of these connections during exploratory behavior in rats by optogenetically inhibiting pyramidal cell and interneuron subpopulations. Light application and associated firing alteration of pyramidal and interneuron populations led to lasting changes in pyramidal-interneuron connection weights as indicated by spike transmission changes. Spike transmission alterations were predicted by the light-mediated changes in the number of pre- and postsynaptic spike pairing events and by firing rate changes of interneurons but not pyramidal cells. This work demonstrates the presence of activity-dependent associative and non-associative reorganization of pyramidal-interneuron connections triggered by the optogenetic modification of the firing rate and spike synchrony of cells

    Gamma oscillatory firing reveals distinct populations of pyramidal cells in the CA1 region of the hippocampus

    Get PDF
    Hippocampal place cells that fire together within the same cycle of theta oscillations represent the sequence of positions (movement trajectory) that a rat traverses on a linear track. Furthermore, it has been suggested that the encoding of these and other types of temporal memory sequences is organized by gamma oscillations nested within theta oscillations. Here, we examined whether gamma-related firing of place cells permits such discrete temporal coding. We found that gamma-modulated CA1 pyramidal cells separated into two classes on the basis of gamma firing phases during waking theta periods. These groups also differed in terms of their spike waveforms, firing rates, and burst firing tendency. During gamma oscillations one group's firing became restricted to theta phases associated with the highest gamma power. Consequently, on the linear track, cells in this group often failed to fire early in theta-phase precession (as the rat entered the place field) if gamma oscillations were present. The second group fired throughout the theta cycle during gamma oscillations, and maintained gamma-modulated firing at different stages of theta-phase precession. Our results suggest that the two different pyramidal cell classes may support different types of population codes within a theta cycle: one in which spike sequences representing movement trajectories occur across subsequent gamma cycles nested within each theta cycle, and another in which firing in synchronized gamma discharges without temporal sequences encode a representation of location. We propose that gamma oscillations during theta-phase precession organize the mnemonic recall of population patterns representing places and movement paths

    Tetrode recording from the hippocampus of behaving mice coupled with four-point-irradiation closed-loop optogenetics: A technique to study the contribution of Hippocampal SWR events to learning

    Get PDF
    With the advent of optogenetics, it became possible to change the activity of a targeted population of neurons in a temporally controlled manner. To combine the advantages of 60-channel in vivo tetrode recording and laser-based optogenetics, we have developed a closed-loop recording system that allows for the actual electrophysiological signal to be used as a trigger for the laser light mediating the optogenetic intervention. We have optimized the weight, size, and shape of the corresponding implant to make it compatible with the size, force, and movements of a behaving mouse, and we have shown that the system can efficiently block sharp wave ripple (SWR) events using those events themselves as a trigger. To demonstrate the full potential of the optogenetic recording system we present a pilot study addressing the contribution of SWR events to learning in a complex behavioral task

    Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze

    Get PDF
    Hippocampus is needed for both spatial working and reference memories. Here, using a radial eight-arm maze, we examined how the combined demand on these memories influenced CA1 place cell assemblies while reference memories were partially updated. This was contrasted with control tasks requiring only working memory or the update of reference memory. Reference memory update led to the reward-directed place field shifts at newly rewarded arms and to the gradual strengthening of firing in passes between newly rewarded arms but not between those passes that included a familiar-rewarded arm. At the maze center, transient network synchronization periods preferentially replayed trajectories of the next chosen arm in reference memory tasks but the previously visited arm in the working memory task. Hence, reference memory demand was uniquely associated with a gradual, goal novelty-related reorganization of place cell assemblies and with trajectory replay that reflected the animal’s decision of which arm to visit next

    Disrupted-in-schizophrenia 1 overexpression disrupts hippocampal coding and oscillatory synchronization

    Get PDF
    Aberrant proteostasis of protein aggregation may lead to behavior disorders including chronic mental illnesses (CMI). Furthermore, the neuronal activity alterations that underlie CMI are not well understood. We recorded the local field potential and single‐unit activity of the hippocampal CA1 region in vivo in rats transgenically overexpressing the Disrupted‐in‐Schizophrenia 1 (DISC1) gene (tgDISC1), modeling sporadic CMI. These tgDISC1 rats have previously been shown to exhibit DISC1 protein aggregation, disturbances in the dopaminergic system and attention‐related deficits. Recordings were performed during exploration of familiar and novel open field environments and during sleep, allowing investigation of neuronal abnormalities in unconstrained behavior. Compared to controls, tgDISC1 place cells exhibited smaller place fields and decreased speed‐modulation of their firing rates, demonstrating altered spatial coding and deficits in encoding location‐independent sensory inputs. Oscillation analyses showed that tgDISC1 pyramidal neurons had higher theta phase locking strength during novelty, limiting their phase coding ability. However, their mean theta phases were more variable at the population level, reducing oscillatory network synchronization. Finally, tgDISC1 pyramidal neurons showed a lack of novelty‐induced shift in their preferred theta and gamma firing phases, indicating deficits in coding of novel environments with oscillatory firing. By combining single cell and neuronal population analyses, we link DISC1 protein pathology with abnormal hippocampal neural coding and network synchrony, and thereby gain a more comprehensive understanding of CMI mechanisms

    The entorhinal cognitive map is attracted to goals

    Get PDF
    Grid cells with their rigid hexagonal firing fields are thought to provide an invariant metric to the hippocampal cognitive map, yet environmental geometrical features have recently been shown to distort the grid structure. Given that the hippocampal role goes beyond space, we tested the influence of nonspatial information on the grid organization. We trained rats to daily learn three new reward locations on a cheeseboard maze while recording from the medial entorhinal cortex and the hippocampal CA1 region. Many grid fields moved toward goal location, leading to long-lasting deformations of the entorhinal map. Therefore, distortions in the grid structure contribute to goal representation during both learning and recall, which demonstrates that grid cells participate in mnemonic coding and do not merely provide a simple metric of space
    • 

    corecore